Search results

Search for "seed crystals" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • nanocrystallites present in as-deposited MLs may have acted as a nuclei for the directional crystallization of the nanoparticles as has also been suggested by Bertan and co-workers [38]. It is postulated there, that the nanosized ordered domains of Si have acted as seed crystals, resulting in a swift growth of
  • SiGe core–shell NCs, as comprehensively studied by GiXRD and TEM analysis. The self-assembly is attributed to a dominant strain relaxation process, further assisted by already present small nanoparticles in the as-grown structures, acting as seed crystals for heterogeneous nucleation. The photocurrent
PDF
Album
Full Research Paper
Published 17 Sep 2019

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • nanostructures. Keywords: hydrothermal crystal growth; lithography; nanostructures; seed crystals; surface processes; oxides; Introduction Rutile TiO2 is a chemically stable semiconductor with a band gap of 3.1 eV [1]. Dependent on the kind of nanostructure and doping, it has outstanding electronic and
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

  • Landon J. Brower,
  • Lauren K. Gentry,
  • Amanda L. Napier and
  • Mary E. Anderson

Beilstein J. Nanotechnol. 2017, 8, 2307–2314, doi:10.3762/bjnano.8.230

Graphical Abstract
  • particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the
  • codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • ambient conditions and under zero shear is discussed first. The critical steps for the formation of nanoplates are the twinning of seed crystals, the size reduction of particles and their controlled assembly to form two-dimensional nanoplates. The cobalt seeds are small spherical nanoparticles of ca. 30
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • addressed individually afterwards by confocal microscopy [27]. The nanodiamonds acted as seed crystals in the subsequent overgrowth in the MWPECVD plasma process. In this manner, we produced particles with diameters up to 700 nm, as shown in Figure 15a. Because of the harsh plasma environment the silicon
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012
Other Beilstein-Institut Open Science Activities